Bsc 3rd Sem Mathematics Paper 2023-24
Bsc 3rd Sem Mathematics Paper 2023-24
Created by Jitendra Kumar Gupta
नमस्कार दोस्तों आपको हमारे चैनल Analysis Science Academy में स्वागत किया जाता है आपको आज हम Bsc 3rd Semester Mathematics Paper 2024 Paper:- First जिसका नाम है Algebra and Mathematical Method kaModel Paper के बारे में Full Details में बताया गया है उम्मीद है यह Article आपको जरूर पसंद आएगा यदि आपको यह Article पसंद आया तो Article को Share and Comment जरूर करें
4253
B. Sc. (Semester-III) Examination - 2023
Mathematics
Paper : I
Algebra & Mathematical Method
Time: Two Hours Maximum Murks: 75
Note : Attempt the questions from all sections as directed.
नोट : सभी खण्डों से निर्देशानुसार प्रश्नों के उत्तर दीजिए।
Inst. The candidates are required to answer only in serial order. If there are many part of question and answer them in continuation.
नोट: अभ्यर्थी प्रश्नों के उत्तर क्रमानुसार लिखें। यदि किसी प्रश्न का कई भाग हो तो उनके उत्तर एक ही तारतम्य में लिखे जाए।
Section -A
खण्ड अ
(Very Short Answer Type Questions )
( अति लघु उत्तरीय प्रश्न)
Note : Attempt any three out of five questions. Each question carries 3 marks. Write answer of each question in about 50 words. (3x3=9)
नोट 5 प्रश्नों में से किन्हीं 3 प्रश्नों को हल कीजिए। प्रत्येक प्रश्न 3 अंकों का है। प्रत्येक प्रश्न की शब्द सीमा 50 शब्दों की है।
1 (a) Use Fermat's theorem to find the remainder of 9107 , when
divided by 11.
(b) Define equivalence relation. Give an example of equivalence
relation.
(c) Define cyclic group with examples.
(d) show that
(e) If f = tan–1(y/x), verify that
Section - B
खण्ड - ब
(Short Answer Type Questions)
( लघु उत्तरीय प्रश्न )
Note : Attempt any four out of seven questions Each question carries
9 marks. Write answer of each question in about 225 words.
( 9 x 4)
नोट : 7 प्रश्नों में से किन्हीं 4 प्रश्नों को हल कीजिए प्रत्येक प्रश्न अंकों का है। प्रत्येक
प्रश्न की शब्द सीमा 225 शब्दों की है।
2. (a) State and Prove Fermat and Euler's theorem.
(b) Define the Normal subgroups and Prove that
Intersection of two normal subgroups of a
group is a normal subgroup.
(c) Discuss the maximum or minimum values
u = x³ + y³ - 3axy
(d) What is definition of subrings. Show that the set
of matrices is a subring of the ring of
2×2 matrices with integral elements.
(f) Define Fourier Transforms . Prove that convolution or Falting
theorem for Fourier Transforms.
Section -C
खण्ड - स
(Long Answer Questions )
(दीर्घ उत्तरीय प्रश्न)
Note: Attempt any two questions out of four questions.
Each question earries 15 marks . Write answer of
each question in about. 475 words.
( 15 x 2 = 30 )
3 (a) State and Prove Fundamental Theorem of Homomorphism.
(b) If H is a subgroup of a group G and a, b ∈ G, then
(i) aH = bH if and only if a–1 b ∈ H
(ii) Ha = Hb if and only if ab–1 ∈H
(c) Write down Taylor's theorem for the function of two variables.
Expand the function f(x, y) = tan⁻¹ (y/x) in the neighbourhood
of the point (1, 1) upto second degree terms using Taylor's
theorem. Hence computer f(1.1, 0.9) approximately.
| Course name | Paper name | Download PDF |
|---|---|---|
| Bsc Third Semester Paper 2023-24 | Algebra and mathematical method | Click here |
| Bsc Third Semester Solved Paper 2023-24 | Algebra and mathematical method | Click here |
Post a Comment